Comparison of 3D point cloud quality based on image data acquired with various UAV- and camera systems from low cost to professional

Christian Thiel¹, Jens Kersten¹, Sören Hese², Sina Truckenbrodt², Martin Kunz³, Paul Debus⁴, Volker Rodehorst⁴, Norman Hallermann⁴, Robert Eckardt², Andre Gräf⁵

The Background

- · Paramount goal of EO: Collect data to boost understanding of biophysical processes and relationships on earth for making wise decisions
- · Data collection should include all means of observations: in situ, unmanned aerial vehicles (UAV), airborne, spaceborne, citizen scientists
- E.g. low cost drones piloted by citizens have great potential to supplement need for 3D data

The Experiment

- 7 UAVs / 9 camera systems (survey to toy level)
- Optimal acquisition conditions on 01.11.2018:
- diffuse light, no wind • Flight altitude: 100 m over ground
- Image overlap 75% along and across track nominal
- Exposure time < 1/320 s to prevent motion blur

• Delineation of orthomosaics and dense point clouds [high] (Agisoft Metashape 1.5.1) • Each UAV datasets was processed three times:

Reference data

Data Processing

3.) Using all 8 GCPs

Pixel spacing orthomosaic 1.5 cm

- LiDAR data (2014), 13.5 points/m²
- 8 GCPs surveyed with RTK GNSS

1.) Using on-board GNSS data only Using the 3 exterior GCPs only,

• No manipulation of original image data Sony 7 R 35 mm DJI Phanto

7360 x 4912

667,158,869

516

516

2216

1.47 cm

ca. 30 h

Tab. 1. Camera, Data and Product parameters for three camera

5472 x 364

177,342,850

664

2 45 cm

3 cm

ca. 4.5 h

200

189

4000 x 3000

160,768,494

380

359

480

2 98 cm

3 cm

ca. 6.5 h

Fig. 3. Location of test site (OSM data)

The Testsite Jenaer Forst

· 2 km to the West of Jena, Germany

• Flat terrain, dimensions: 800 m x 350 m

nagery for the nine different camera systems: GCP Teflon panel – high contrast, graffiti on roof – low contrast, tiles on roof – fine scale textu

Results

camera pixel

images acquired

images aligned

Ground resolution

Total processing time

points # points per m²

	Error X [m]	Error Y [m]	Error Z [m]
Sony R7 – GNSS	1.467	2.422	1.249
Sony R7 – GNSS + 3 GCPs *	0.033	0.019	0.879
Sony R7 – GNSS + 8 GCPs			0.004
Phantom P4 – GNSS	3.569	1.021	17.633
Phantom P4 – GNSS + 3 GCPs *	0.124	0.531	0.719
Phantom P4 – GNSS + 8 GCPs	0.004	0.004	0.009
Mavic 2016 – GNSS	1.245	0.982	18.879
Mavic 2016 - GNSS + 3 GCPs *	0.175	0.455	0.620
Mavic 2016 - GNSS + 8 GCPs			

Tab. 2. Absolute location accuracy (RMSE) for the three processing/georefere levels. The large Z-errors for DJI drones using onboard GNSS data only is causeroneous altitude readings (solvable). \star Improved camera calibration using 8 results in lower location errors (XYZ < 0.2 m)

nt of relative height accuracy (relevant for nDSM). Computation of ∆Z for four different buildings and comparison to LiDAR

Summary of preliminary results & outlook

- Low cost UAV image data can be used for orthomosaic and point cloud generation
- Without GCPs 2D (XY) geolocation accuracy was better than 5 m (for low cost UAVs)
- Without GCPs Z offset of model was close to 20 m (for low cost UAVs)
- 3 GCPs were not sufficient for sound camera calibration (flat terrain, single scale nadir images)
- Delineated relative heights (building heights) in good agreement with LiDAR (ΔZ < 10 cm) \rightarrow generation of precise nDSM feasible
- Small σ (< 1.4 cm) of Z values over smooth and planar surfaces for all cameras low cost cameras show larger σ
- · Future Work: Elaboration of camera calibration scheme suited for CS (external pre-calibration/self calibration using suited image data)
- · Analysis of remaining data, extension of analysis...

Deutsches Zentrum für Luft- und Raumfahrt Kontakt: 1DLR - Institut of Data Science | Citizen Science Team | Jena Christian Thiel | E-Mail: Christian.Thiel@dlr.de

